Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(tail(cons(X, XS))) → mark(XS)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 2 + 2·x1   
POL(take(x1, x2)) = x1 + 2·x2   
POL(zip(x1, x2)) = 2 + x1 + x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(repItems(nil)) → mark(nil)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 2   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 2·x1 + 2·x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(take(x1, x2)) = 2 + x1 + x2   
POL(zip(x1, x2)) = 2·x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

active(take(0, XS)) → mark(nil)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 2·x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(zip(x1, x2)) = 2·x1 + 2·x2   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ZIP(X1, mark(X2)) → ZIP(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
TAIL(active(X)) → TAIL(X)
MARK(tail(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(repItems(cons(X, XS))) → CONS(X, cons(X, repItems(XS)))
ACTIVE(oddNs) → MARK(incr(pairNs))
INCR(active(X)) → INCR(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
ACTIVE(incr(cons(X, XS))) → INCR(XS)
PAIR(X1, active(X2)) → PAIR(X1, X2)
S(active(X)) → S(X)
INCR(mark(X)) → INCR(X)
ACTIVE(repItems(cons(X, XS))) → REPITEMS(XS)
MARK(tail(X)) → TAIL(mark(X))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
TAKE(active(X1), X2) → TAKE(X1, X2)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → PAIR(X, Y)
ACTIVE(take(s(N), cons(X, XS))) → TAKE(N, XS)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → ZIP(XS, YS)
MARK(pair(X1, X2)) → MARK(X1)
ZIP(X1, active(X2)) → ZIP(X1, X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(incr(cons(X, XS))) → CONS(s(X), incr(XS))
ZIP(mark(X1), X2) → ZIP(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(oddNs) → ACTIVE(oddNs)
MARK(take(X1, X2)) → MARK(X2)
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(incr(X)) → INCR(mark(X))
PAIR(mark(X1), X2) → PAIR(X1, X2)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(repItems(X)) → REPITEMS(mark(X))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
MARK(zip(X1, X2)) → MARK(X2)
ACTIVE(incr(cons(X, XS))) → S(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
ACTIVE(pairNs) → INCR(oddNs)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(pairNs) → CONS(0, incr(oddNs))
ACTIVE(take(s(N), cons(X, XS))) → CONS(X, take(N, XS))
ACTIVE(repItems(cons(X, XS))) → CONS(X, repItems(XS))
REPITEMS(mark(X)) → REPITEMS(X)
MARK(zip(X1, X2)) → ZIP(mark(X1), mark(X2))
PAIR(active(X1), X2) → PAIR(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
ACTIVE(oddNs) → INCR(pairNs)
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → CONS(pair(X, Y), zip(XS, YS))
MARK(zip(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
REPITEMS(active(X)) → REPITEMS(X)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(nil) → ACTIVE(nil)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ZIP(X1, mark(X2)) → ZIP(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
TAIL(active(X)) → TAIL(X)
MARK(tail(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
CONS(X1, mark(X2)) → CONS(X1, X2)
ACTIVE(repItems(cons(X, XS))) → CONS(X, cons(X, repItems(XS)))
ACTIVE(oddNs) → MARK(incr(pairNs))
INCR(active(X)) → INCR(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
ACTIVE(incr(cons(X, XS))) → INCR(XS)
PAIR(X1, active(X2)) → PAIR(X1, X2)
S(active(X)) → S(X)
INCR(mark(X)) → INCR(X)
ACTIVE(repItems(cons(X, XS))) → REPITEMS(XS)
MARK(tail(X)) → TAIL(mark(X))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
TAKE(active(X1), X2) → TAKE(X1, X2)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → PAIR(X, Y)
ACTIVE(take(s(N), cons(X, XS))) → TAKE(N, XS)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → ZIP(XS, YS)
MARK(pair(X1, X2)) → MARK(X1)
ZIP(X1, active(X2)) → ZIP(X1, X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(incr(cons(X, XS))) → CONS(s(X), incr(XS))
ZIP(mark(X1), X2) → ZIP(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
MARK(oddNs) → ACTIVE(oddNs)
MARK(take(X1, X2)) → MARK(X2)
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(incr(X)) → INCR(mark(X))
PAIR(mark(X1), X2) → PAIR(X1, X2)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(repItems(X)) → REPITEMS(mark(X))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
MARK(zip(X1, X2)) → MARK(X2)
ACTIVE(incr(cons(X, XS))) → S(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
ACTIVE(pairNs) → INCR(oddNs)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(pairNs) → CONS(0, incr(oddNs))
ACTIVE(take(s(N), cons(X, XS))) → CONS(X, take(N, XS))
ACTIVE(repItems(cons(X, XS))) → CONS(X, repItems(XS))
REPITEMS(mark(X)) → REPITEMS(X)
MARK(zip(X1, X2)) → ZIP(mark(X1), mark(X2))
PAIR(active(X1), X2) → PAIR(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
ACTIVE(oddNs) → INCR(pairNs)
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → CONS(pair(X, Y), zip(XS, YS))
MARK(zip(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
REPITEMS(active(X)) → REPITEMS(X)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(nil) → ACTIVE(nil)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 9 SCCs with 24 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

REPITEMS(mark(X)) → REPITEMS(X)
REPITEMS(active(X)) → REPITEMS(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

REPITEMS(active(X)) → REPITEMS(X)
REPITEMS(mark(X)) → REPITEMS(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, active(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, active(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(X1, active(X2)) → ZIP(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(X1, active(X2)) → ZIP(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, active(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, active(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)
S(active(X)) → S(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)
INCR(active(X)) → INCR(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)
INCR(active(X)) → INCR(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QDPSizeChangeProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(take(X1, X2)) → MARK(X2)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → MARK(X1)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(repItems(X)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 2   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 2·x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 1 + 2·x1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(take(x1, x2)) = 2·x1 + x2   
POL(zip(x1, x2)) = 2·x1 + 2·x2   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(take(X1, X2)) → MARK(X2)
MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(s(X)) → MARK(X)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(tail(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → MARK(X1)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(tail(X)) → MARK(X)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 2·x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 2 + x1   
POL(take(x1, x2)) = x1 + x2   
POL(zip(x1, x2)) = 2·x1 + x2   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(take(X1, X2)) → MARK(X2)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pairNs) → ACTIVE(pairNs)
MARK(take(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → MARK(X1)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(zip(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → MARK(X1)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = 2·x1   
POL(tail(x1)) = 2·x1   
POL(take(x1, x2)) = 2·x1 + x2   
POL(zip(x1, x2)) = 2 + 2·x1 + x2   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(take(X1, X2)) → MARK(X2)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(take(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(take(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → MARK(X1)


Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 2·x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(incr(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 2·x1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(take(x1, x2)) = 1 + x1 + 2·x2   
POL(zip(x1, x2)) = x1 + 2·x2   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
QDP
                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(incr(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(oddNs) = 1   
POL(pair(x1, x2)) = 0   
POL(pairNs) = 1   
POL(repItems(x1)) = 1   
POL(s(x1)) = 0   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = 1   
POL(zip(x1, x2)) = 1   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
QDP
                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = x2   
POL(zip(x1, x2)) = 1 + x1 + x2   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
mark(0) → active(0)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
mark(nil) → active(nil)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(repItems(X)) → active(repItems(mark(X)))
mark(oddNs) → active(oddNs)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(mark(X)))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(tail(X)) → active(tail(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
active(oddNs) → mark(incr(pairNs))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP
                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(incr(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(oddNs) = 1   
POL(pair(x1, x2)) = 0   
POL(pairNs) = 1   
POL(repItems(x1)) = 1   
POL(s(x1)) = 0   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = 1   
POL(zip(x1, x2)) = 0   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
QDP
                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 1 + x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = x2   
POL(zip(x1, x2)) = x1 + x2   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
mark(0) → active(0)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
mark(nil) → active(nil)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(repItems(X)) → active(repItems(mark(X)))
mark(oddNs) → active(oddNs)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(mark(X)))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(tail(X)) → active(tail(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
active(oddNs) → mark(incr(pairNs))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
QDP
                                                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = 1   
POL(active(x1)) = 0   
POL(cons(x1, x2)) = 0   
POL(incr(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(oddNs) = 1   
POL(pair(x1, x2)) = 0   
POL(pairNs) = 1   
POL(repItems(x1)) = 0   
POL(s(x1)) = 0   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = 1   
POL(zip(x1, x2)) = 0   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
QDP
                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(pairNs) → ACTIVE(pairNs)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = 1 + x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = 1 + x2   
POL(zip(x1, x2)) = 1 + x1 + x2   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
mark(0) → active(0)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
mark(nil) → active(nil)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(repItems(X)) → active(repItems(mark(X)))
mark(oddNs) → active(oddNs)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(mark(X)))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(tail(X)) → active(tail(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
active(oddNs) → mark(incr(pairNs))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
QDP
                                                                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(pair(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(pairNs) → ACTIVE(pairNs)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(pair(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(pair(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
MARK(pairNs) → ACTIVE(pairNs)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 0   
POL(pair(x1, x2)) = 1 + x1 + x2   
POL(pairNs) = 0   
POL(repItems(x1)) = x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = x2   
POL(zip(x1, x2)) = 1 + x1 + x2   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
mark(0) → active(0)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
mark(nil) → active(nil)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(repItems(X)) → active(repItems(mark(X)))
mark(oddNs) → active(oddNs)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(mark(X)))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(tail(X)) → active(tail(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
active(oddNs) → mark(incr(pairNs))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
QDP
                                                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(pairNs) → ACTIVE(pairNs)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(oddNs) → MARK(incr(pairNs))
The remaining pairs can at least be oriented weakly.

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(pairNs) → ACTIVE(pairNs)
MARK(cons(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 1   
POL(pair(x1, x2)) = 0   
POL(pairNs) = 0   
POL(repItems(x1)) = x1   
POL(s(x1)) = x1   
POL(tail(x1)) = 0   
POL(take(x1, x2)) = x2   
POL(zip(x1, x2)) = x1   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
mark(0) → active(0)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
mark(nil) → active(nil)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(repItems(X)) → active(repItems(mark(X)))
mark(oddNs) → active(oddNs)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(mark(X)))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(tail(X)) → active(tail(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
active(oddNs) → mark(incr(pairNs))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
QDP
                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
MARK(pairNs) → ACTIVE(pairNs)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
QDP
                                                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(s(X)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(pairNs) → ACTIVE(pairNs)
MARK(cons(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(s(X)) → MARK(X)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(pairNs) → ACTIVE(pairNs)
MARK(cons(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(incr(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(oddNs) = 1   
POL(pair(x1, x2)) = 1   
POL(pairNs) = 0   
POL(repItems(x1)) = x1   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(take(x1, x2)) = x2   
POL(zip(x1, x2)) = 1   

The following usable rules [17] were oriented:

take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
s(active(X)) → s(X)
s(mark(X)) → s(X)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
incr(active(X)) → incr(X)
incr(mark(X)) → incr(X)
mark(0) → active(0)
repItems(active(X)) → repItems(X)
repItems(mark(X)) → repItems(X)
mark(nil) → active(nil)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(repItems(X)) → active(repItems(mark(X)))
mark(oddNs) → active(oddNs)
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
mark(incr(X)) → active(incr(mark(X)))
mark(s(X)) → active(s(mark(X)))
active(pairNs) → mark(cons(0, incr(oddNs)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
mark(tail(X)) → active(tail(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
active(oddNs) → mark(incr(pairNs))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
QDP
                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
QDP
                                                                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(pairNs) → ACTIVE(pairNs)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
QDP
                                                                                        ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

MARK(s(X)) → MARK(X)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(cons(X1, X2)) → MARK(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

MARK(s(X)) → MARK(X)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(cons(X1, X2)) → MARK(X1)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(ACTIVE(x1)) = 2·x1   
POL(MARK(x1)) = 1 + 2·x1   
POL(cons(x1, x2)) = 1 + 2·x1 + x2   
POL(incr(x1)) = x1   
POL(oddNs) = 0   
POL(pairNs) = 2   
POL(s(x1)) = 2·x1   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ DependencyPairsProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
                              ↳ QDP
                                ↳ RuleRemovalProof
                                  ↳ QDP
                                    ↳ RuleRemovalProof
                                      ↳ QDP
                                        ↳ QDPOrderProof
                                          ↳ QDP
                                            ↳ QDPOrderProof
                                              ↳ QDP
                                                ↳ QDPOrderProof
                                                  ↳ QDP
                                                    ↳ QDPOrderProof
                                                      ↳ QDP
                                                        ↳ QDPOrderProof
                                                          ↳ QDP
                                                            ↳ QDPOrderProof
                                                              ↳ QDP
                                                                ↳ QDPOrderProof
                                                                  ↳ QDP
                                                                    ↳ QDPOrderProof
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ QDPOrderProof
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ UsableRulesReductionPairsProof
QDP
                                                                                            ↳ PisEmptyProof

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.